
LOHMANN

LOHMANN BREEDERS

LOHMANN BREEDERS The specialist for layer breeding

Current & future challenges of poultry diagnostics Dr. Matthias Voss; Veterinary Scientific Director

OHMANN

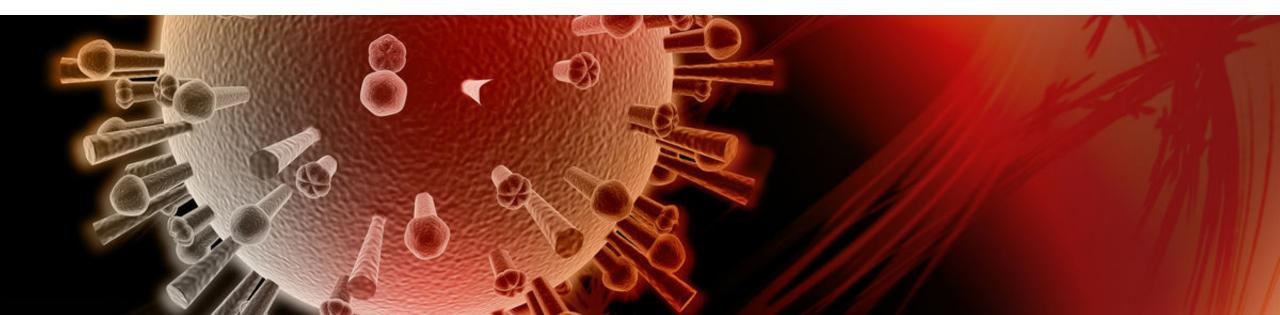
BRFFDFRS

ECO Asia Poultry Online Conference 2021

BREEDING FOR SUCCESS...TOGETHER

Basics of Diagnostic Testing

What do we have?


When to test for what?

Current Challenges: Pathogen identification, vaccine vs field strain?

Future Challenges: on-site testing, DIVA vaccination and others

Basics of Diagnostic Testing

--->mandatory / regulatory testing:

--->disease control programs, trade (e.g., Salmonella, Avian Influenza, Mycoplasma)

--->Vaccination monitoring:

--->evaluation of efficacy of vaccination program, need for adaptation, new pathogens in the field

--->Clinical health problems:

---> mortality, respiratory, egg production drops

--->hygiene monitoring:

--->Farms, hatchery

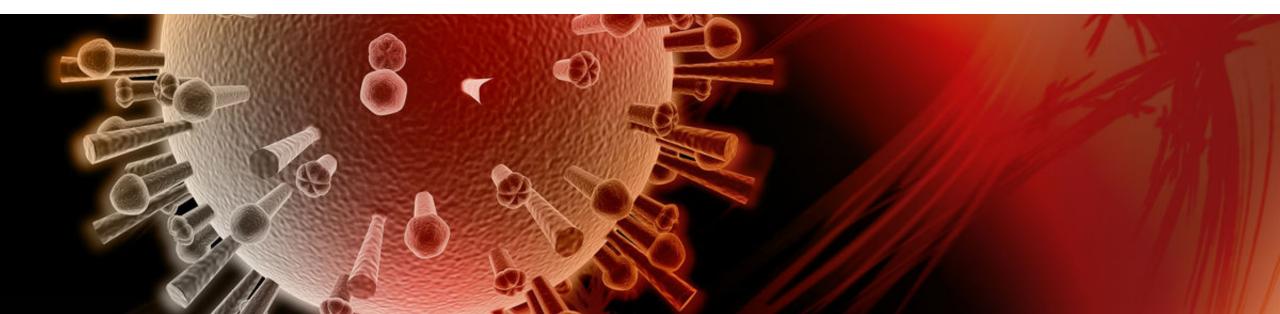
Requirements for diagnostic testing

---→Rapid:

--->Immediate identification of certain highly contagious disease, important to limit further transmission (Avian Influenza! Newcastle!)

--->Sensitive and specific:

--->Tests need to show high sensitivity by acceptable specificity (false positives / false negatives)


--->Affordable:

---> Test must be affordable in relation to the diagnostic outcome; ad the end in most cases the farmer must pay; cost benefit

What do we have?

Pyramid of Poultry Diagnostics

Clinical examination

• Flock inspection & performance data

Pathology

Postmortem; histo-pathology

Serology

Antibody detection

Pathogen identification

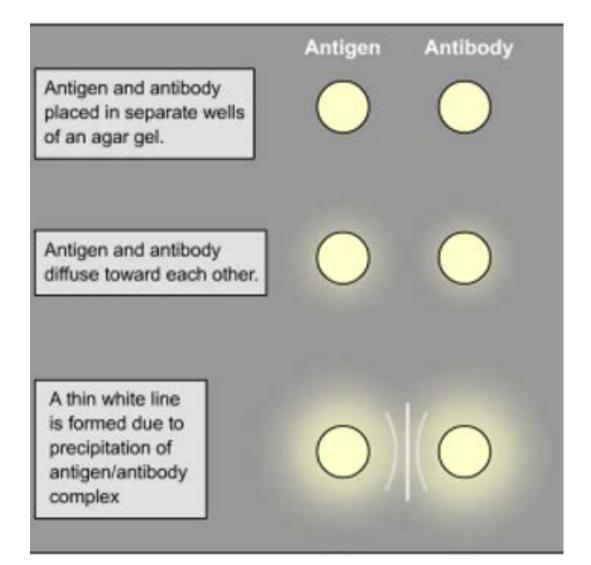
Isolation and characterization

- --->Rapid Plate Agglutination (RPA)
 --->Agargel Precipitation Test (AGPT)
 --->Hemagglutination Inhibition Test (HI)
 --->ELISA
- --->Virus Neutralisation (VN) Test
- --->Serum Neutralisation (SN) Test
- --->Immunofluorescence

Rapid Plate Agglutination (RPA)

Could be used for	Advantage	Disadvantage
Mycoplasma (Mg, Ms)	Easy and rapidly to perform	 Quality of antigens available in the market False positive reactions especially after use of inactivated vaccines Less sensitive as some of the ELISA tests?
S. gallinarum / pullorum	Easy and rapidly to perform	 Quality of antigens available in the market

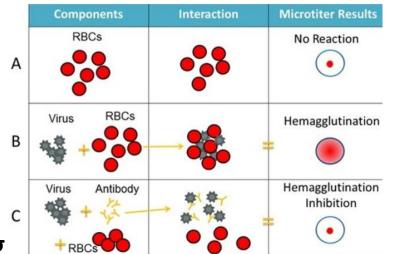
10

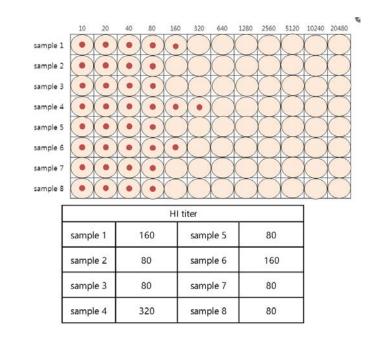

Agargel Precipitation Test (AGPT)

Could be used for	Advantage	Disadvantage
Infectious Bronchitis	 Easy to perform Detects contact of a flock with live virus (both vaccine or field virus) Group specific 	 Only yes / no answer No actual antibody titer Not suitable to differentiate between different IB strains
Fowl Adeno Virus (FAdV)	 Easy to perform Group specific (if antigens used are suitable) 	 Only yes / no answer No actual antibody titer Not suitable to differentiate between different FAdV strains
Marek's	 Only routine test available for the detection of antibodies 	 Not relevant for protection (only for testing SPF flocks)

Agar Gel Precipitation: AGP

- --->easy to perform
- --->qualitative results: yes / no
- --->group specific antigens
- not suitable to differentiate between different strains (e.g. IB, AI)
- AGP sometimes mandatory for trade purpose


Haemagglutination Inhibition Test (HI)


Could be used for	Advantage	Disadvantage
Infectious Bronchitis	Easy to performSerotype-specific	 more cross-reactions compared to VN test
Newcastle Disease	 Easy to perform Even live vaccines could be used as antigen Used if ELISA technology is not available 	 Correlation between HI and ELISA some times difficult to interpretate
Egg Drop Syndrome	Easy to perform	 Non if antigen is available
Avian Influenza	 Only way to differentiate between antibodies against different AI viruses 	 Only possible for specialist laboratories

Hemagglutination inhibition test: HI

- Only with hemagglutinating virus : Al, ND, EDS, IB
- --->serotype-specific
- --->live vaccines as antigen used
- specific positive (4 HI units):
 log2 = 4

LOHMANN BREEDERS

Enzyme linked Immunosorbent Assay

Could be used for	Advantage	Disadvantage
In principle for most Avian Pathogens	 Commercially available for most relevant viral infections Commercially available for some of the bacterial infections (e.g. Salmonella, Pasteurella) 	 Commercial kits relatively expensive Need certain lab equipment (e.g. photometer, washer) May show false positive results (back- up test are needed) Interpretation of results depend very much on the knowledge of the producer of the kits

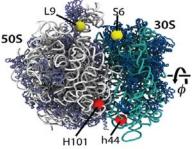
NOMMANN BREEDERS Vaccination baselines (Layers/Breeders)

Test	Vaccine type	Mean titer	Wks after	Suspect titer				
		range	vac. to test	infection				
IBV	live (H120, MA5)	2000 - 4000	3 - 5 wks	> 6000				
	live /H120, 2nd 4/91)	6000 - 10000	3 - 5 wks	> 12000				
	inact.	6000 - 17000	5 - 8 wks					
IBD	live, intermediate	2500 - 7000	3 - 5 wks	> 9000				
	inact.	7000 - 25000	5 - 8 wks					
NDV	live, La Sota	2000 - 8000	3 - 5 wks					
	inact.	10000 - 25000	5 - 8 wks					
REO	live	2000 - 5000	3 - 5 wks	> 6000				
	inact.	7000 - 20000	5 - 8 wks					
ART	live	2000 - 5000	4 - 7 wks					
		7000 - 25000	5 - 8 wks					
AE	live 1 x	5000 - 12000	4 - 6 wks					
ORT	none	negative		> 10000				

Test: Biocheck, based on two times life priming and one time inactivated boosting at 16 – 18 weeks

Could be used for	Advantage	Disadvantage					
Infectious Bronchitis (IBV)	 Most specific method to test for IB variant antibodies 	 Need facilities with tissue culture method Relatively expensive Can give only an indication for the strains used for the VN test 					
Fowl Adenovirus (FAdV)	 Can detect antibodies against serotype 1-12 	 Need facilities with tissue culture method Relatively expensive 					
Gumboro (IBD)	 Can detect antibodies against serotype 2 virus (only relevant for SPF testing) 	 Need facilities with tissue culture method Relatively expensive 					

LOHMANN-BREEDERS.COM


Some Typing Methods for Bacterial Pathogens

> 16s

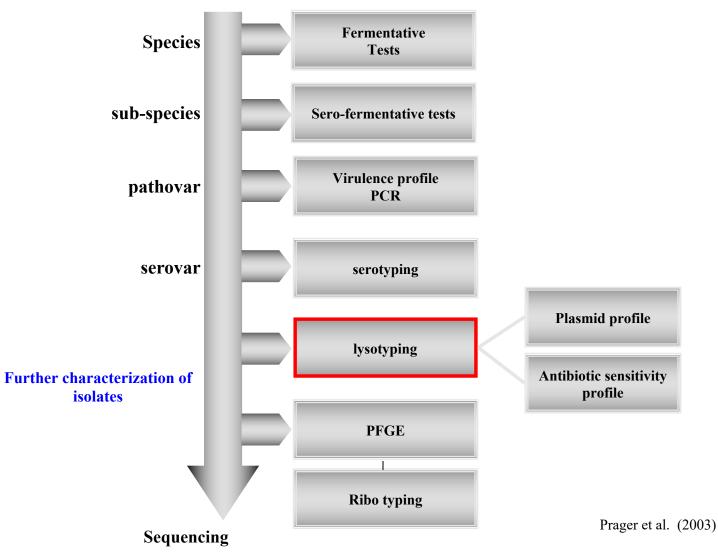
easy to establish

> cheap

suitable to species lever

Maldi-TOF

- Lawrences market And Strange And Strange
- require a good database
- suitable beyond species level


> NGS

- best discrimination power
- relatively expensive
- higher operating expense

> RFLP / MLST

- Iow costs
- suitable beyond species level
- > not standardisable

EXAMPLE: Example: Salmonella typing

Principal of Polymerase Chane Reaction (PCR)

--->Primers

• The PCR primers are artificially synthesized oligonucleotide sequences of DNA ranging from 18 to 22 bases in length, short DNA sequences which anneals at the single-stranded template DNA at its exact complementary position.

--->dNTPs:

• Deoxynucleotide triphosphates are artificially synthesized nucleotides which bind to the growing DNA strand. With the help of the Taq DNA polymerase, the dATP, dGTP, dCTP and dTTP binds at its complementary nucleotides on the growing DNA strand.

--->Taq DNA polymerase:

• The Taq DNA polymerase settles at the ssDNA- primer junction and utilizes it as a substrate for the catalytic reaction.

Types of PCR (1)

--->Conventional PCR:

• Utilizes only a simple Taq DNA polymerase and no modifications.

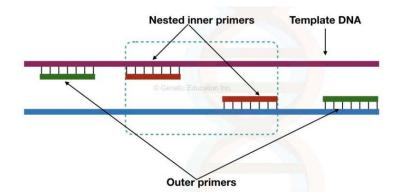
Gradient PCR:

• For optimizing the PCR reaction, different temperature gradients are created in a machine.

Realtime RT PCR:

• A probe attached with a fluorochrome emits fluorescence once it is hydrolyzed from the template and the template is measured. The amount of fluorescence emitted is directly proportional to the amount of DNA present in the sample.

Reverse transcription PCR:

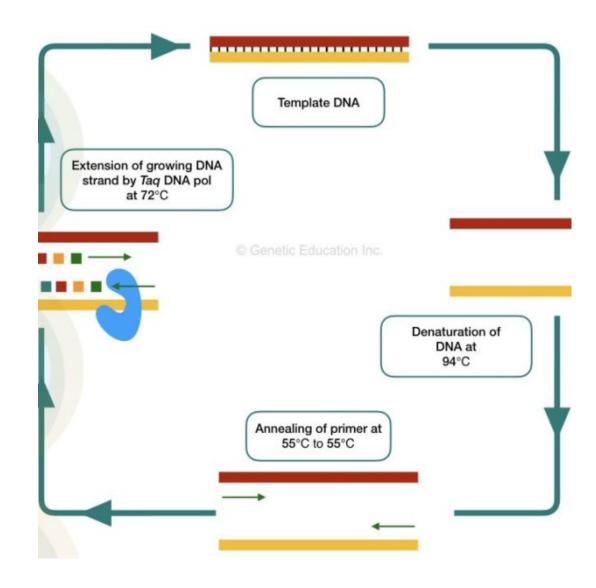

• An enzyme called reverse transcriptase converts the total mRNA into the cDNA which is measured using the same chemistry of the real-time PCR.

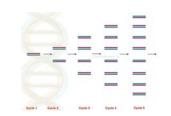
Types of PCR (2)

> Multiplex PCR:

 Multiplex PCR amplifies multiple DNA template regions simultaneous using a different set of primers in a single PCR reaction.

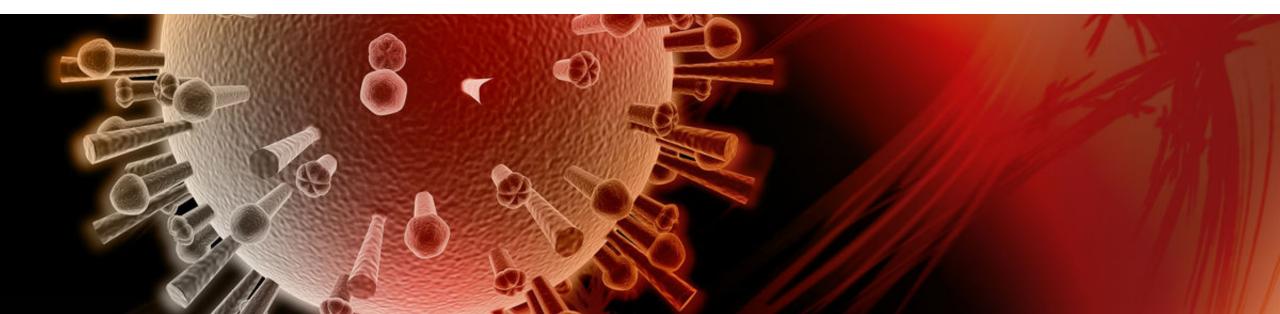
Nested PCR:

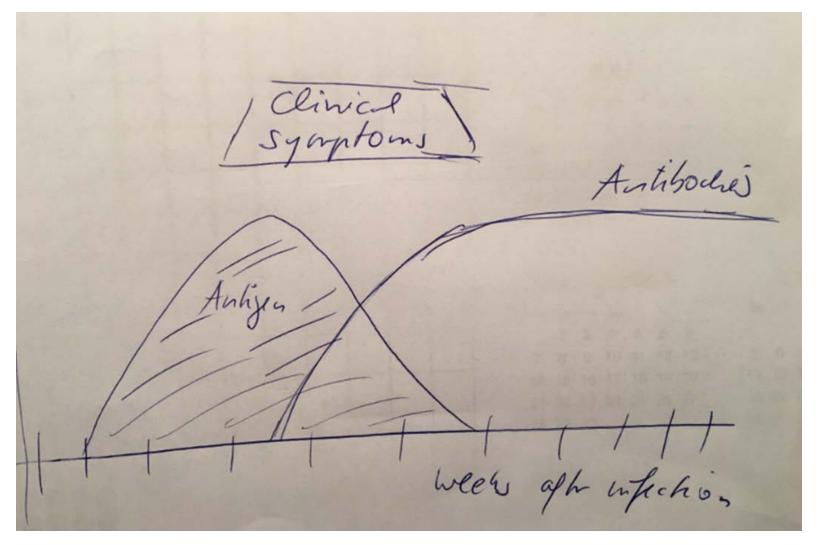

• The first set of primer binds outside of our target DNA and amplifies larger fragment, this set of primer is referred to as an outer primer. Another set of primer binds specifically at the target site and in the second round of amplification, it amplifies only the target DNA, this set of primer is referred to as an inner primer.



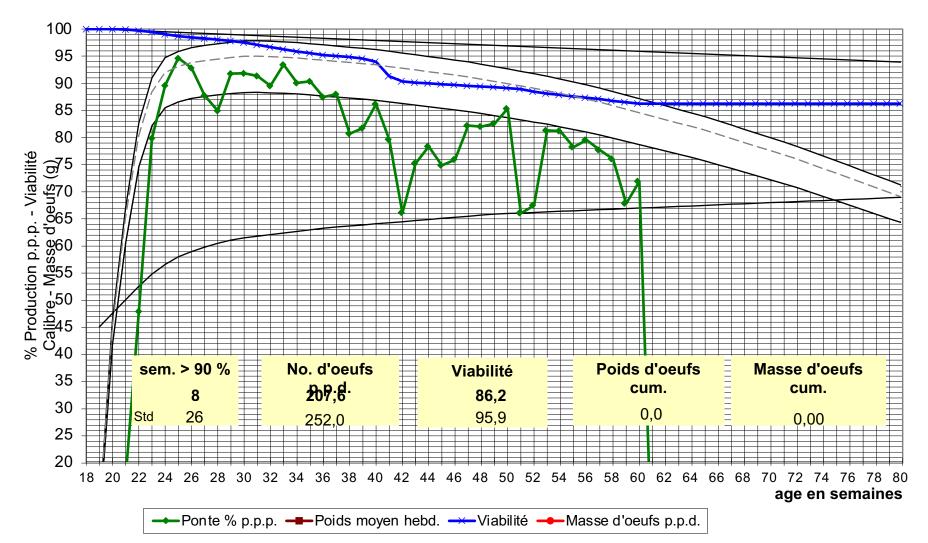
Principal of Polymerase Chane Reaction (PCR)

---> PCR definition:

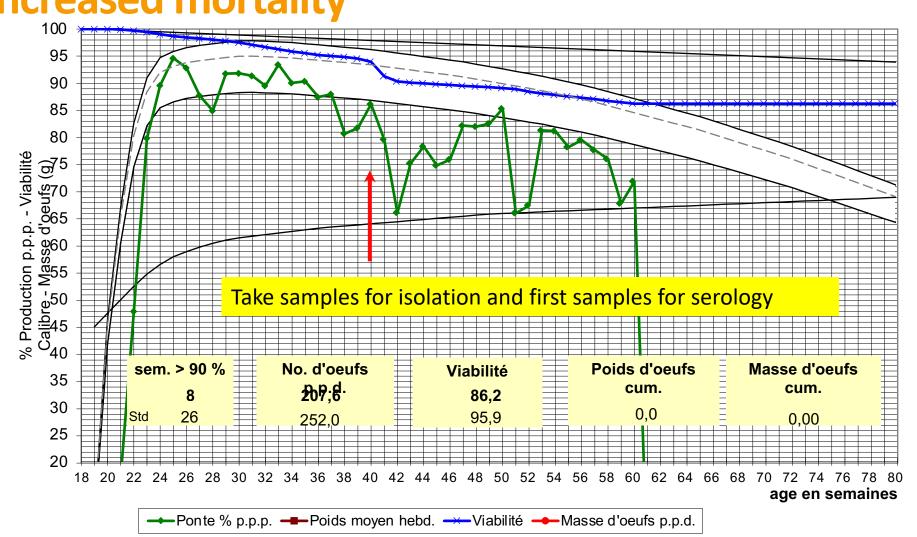

 Laboratory technique used to obtain multiple copies of target DNA fragments using Taq DNA polymerase in a temperature-dependent reaction (Taq: named from *Thermus aquaticus*, a thermostable bacterium)

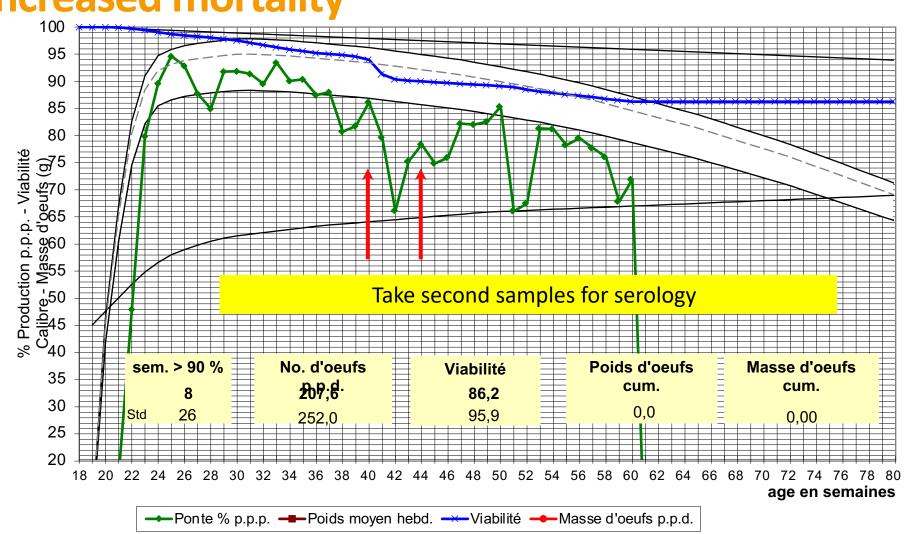


When to test for what?



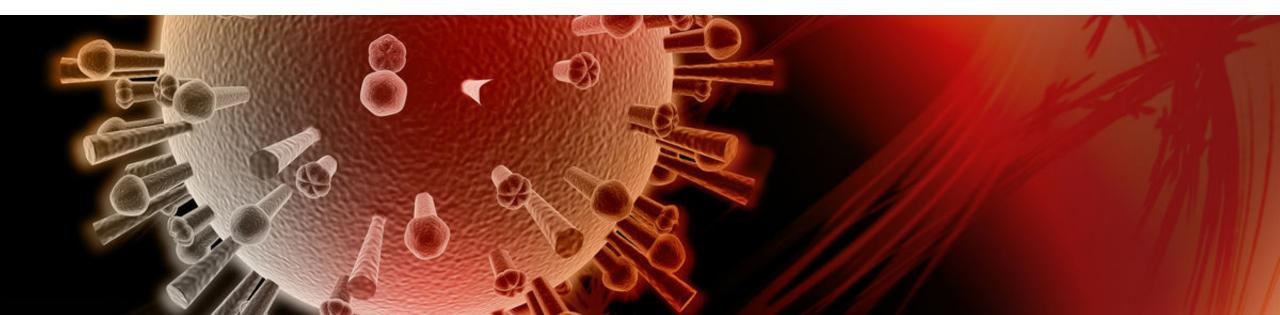
A. Bolte, 2019


LOHMANN-BREEDERS.COM



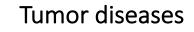
At week 40 severe drop in egg production as well as increased mortality

At week 40 severe drop in egg production as well as increased mortality

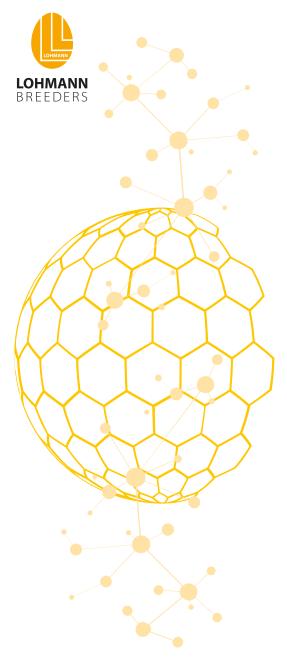


Quick reference for sampling

	Skip les:	Feather .		Brain Swads	l'aches	Lungs acted Sur	Liver - abs	Soleen,	Pances	tioners.	onion China and and and and and and and and and a	Thursday .	Bone no	Burg F	Provent	Geod K Color	Lariousis of	Venes of tung	Joints
AI			$\checkmark\checkmark$		$\checkmark\checkmark$	$\checkmark\checkmark$										$\checkmark\checkmark$			
ART					$\checkmark\checkmark$	$\checkmark\checkmark$													
IBV			$\checkmark\checkmark$		$\checkmark\checkmark$	$\checkmark\checkmark$				\checkmark	\checkmark					$\checkmark\checkmark$			
ND			$\checkmark\checkmark$		$\checkmark\checkmark$	$\checkmark\checkmark$										$\checkmark\checkmark$			
ILT					$\checkmark\checkmark$	✓										✓			
Рох	$\checkmark\checkmark$				$\checkmark\checkmark$														
Mycoplasma					$\checkmark\checkmark$						$\checkmark\checkmark$								√√
EDS		1	\checkmark		1	1	1	1			$\checkmark\checkmark$					I I			
FAdV							$\checkmark\checkmark$	\checkmark	$\checkmark\checkmark$						✓	$\checkmark\checkmark$			
Reo		1	\checkmark		1	1	$\checkmark\checkmark$	\checkmark	$\checkmark\checkmark$						1	$\checkmark\checkmark$			$\checkmark\checkmark$
AE				PCR															
Gumboro (IBD)			\checkmark											$\checkmark\checkmark$	\checkmark				
CAV								√√				√√	$\checkmark\checkmark$						
Marek's/Leukosis		PCR													PCR			PCR	


Current Challenges: Pathogen identification; vaccine vs field strain and others

Pathogen identification and vaccine vs field strain: some examples for diagnostic challenges


Mycoplasma

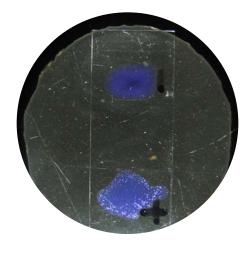
Infectious Bronchitis

Avian Influenza

Mycoplasma

--->For both Mycoplasma gallisepticum and Mycoplasma synoviae there are numerous strains in the field and there is wide variability in the relative virulence and organ tropism of these strains.

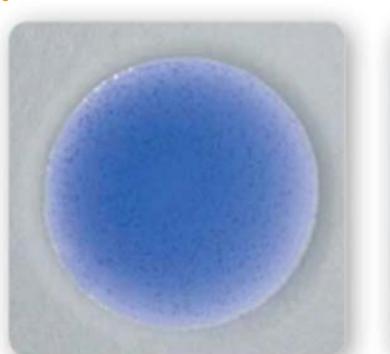
--->*Mycoplasma* is spread through both vertical and horizontal transmission.


--->Horizontal transmission occurs through direct contact with infected birds or indirect contact with contaminated equipment, environment, and personnel.

Diagnosis of Mycoplasma Infections

--->Isolation / Detection

--->Serology



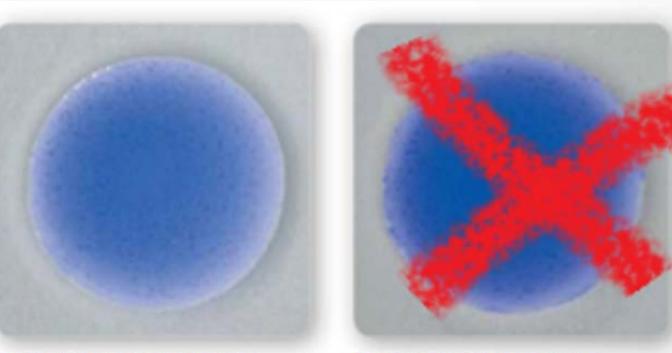
--->Pathology

Plate agglutination: RPA

 easy and rapidly to perform(minutes)
 detects IgM and IgY
 antigen commercially available (at least for mycoplasma and salmonella)
 quality of antigens available in the market

Positive Biovac Mycoplasma

- Lighter solution
- Thin aggregates


Positive Soleil Mycoplasma

- Darker solution
- Large aggregates

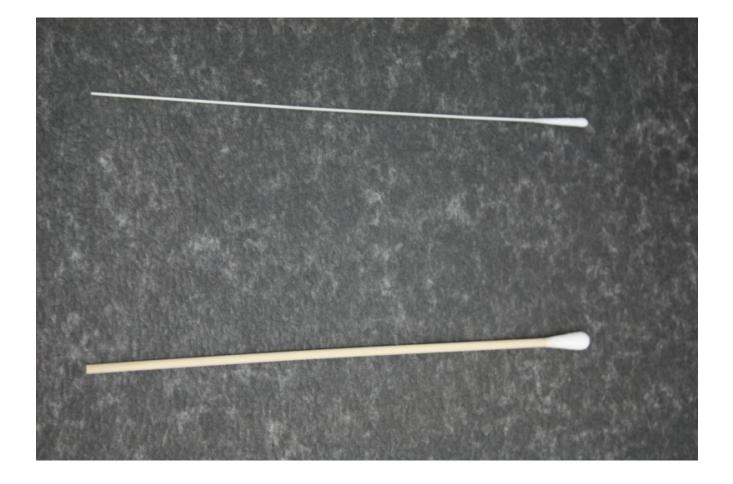
Plate agglutination: RPA

- unspecific reactions possible due to quality of serum
- false positive reactions possible after use of inactivated vaccines
- less sensitive than some of the ELISA tests (?)

Lighter solution Thin aggregates

Positive Soleil Mycoplasma

- Darker solution
- Large aggregates


Diagnosis of Mycoplasma infections via PCR

--->Advantages (over ELISA or culture)

- samples for the examination are easy to obtain (tracheal swabs)
- rapid diagnosis within 2-3 hours
- detection of infection short time after exposure
- high sensitivity

Diagnosis of Mycoplasma infections via PCR

• For sampling:

- ---> -larger (wooden) swabs for cloaca; pools of five

thoroughly shaking out in PBS (phosphate buffered saline) solution

Ms field vs Ms-H: DIVA PCR

		_		
ADIAVET™	MS-H	DIVA	FAST	TIME

Target	Channel	Result				
Internal Control	Hex	Positive	Positive/	Positive/	Positive/	Negative
			negative	negative	negative	
MS field	FAM	Negative	Positive	Negative	Positive	Negative
MS-H	Cy5	Negative	Negative	Positive	Positive	Negative
Result: Ms field		No	Yes	No	Yes	Invalid
Result: Ms-H		No	No	Yes	Yes	invalid

Pathogen identification and vaccine vs field strain: some examples for diagnostic challenges

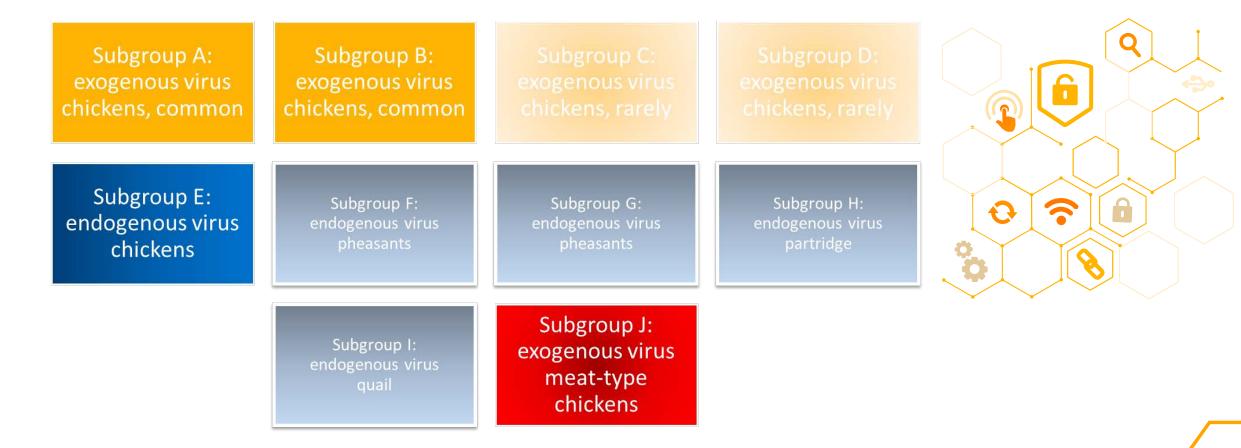
Mycoplasma

Tumor diseases

Infectious Bronchitis

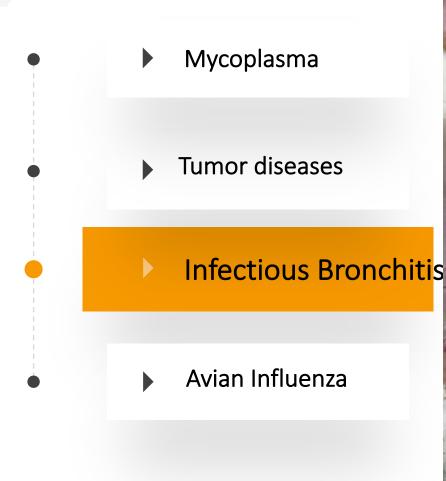
Avian Influenza

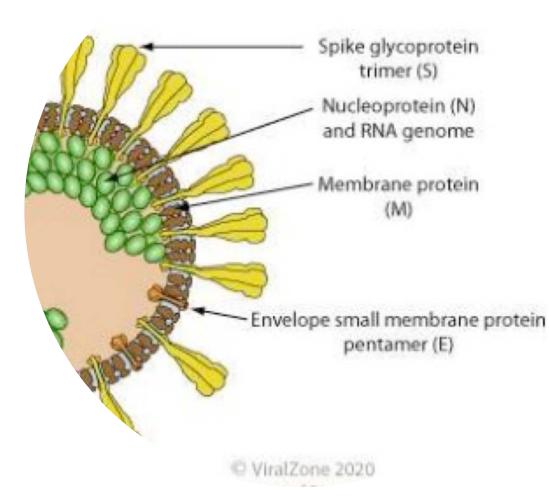
Marek's versus Avian Leukosis


	Marek	ALV A/B
occurence	world-wide	sporadic
prevalence	high	eradicated from primary breeder populations
age	>6 weeks	> 30-35 weeks
frequency	0-50%	>2-5%
potential source	ubiquitous	back-yard, contaminated vaccines

Pathological findings in tumor diseases 12 10 8 6 2 0 liver spleen proventriculus lung trachea cartilage skin ovary heart Bursa nerves

■ Marek ■ PN ■ Leukosis A/B ■ Leukosis J ■ REV




Detection of	Test System	Subgroups	Sample	Remarks
	ELISA IDEXX	A + B (?)	serum	screening for infection
antibodies	ELISA J	J	serum	screening for infection
	SN	all subgroups	serum	screening for infection
	ELISA IDEXX	p 27, all subgroups	cloacal swabs, meconium, albumen, (serum)	eradication
antigen	virus isolation C/O	all subgroups	serum	detection of infectious virus
unugon	virus isolation C/E	A - D, J	serum	diff. endog./exog. virus
	PCR testing	all subgroups, depending on primers	various	

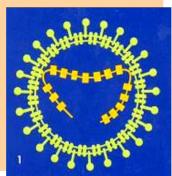
Pathogen identification and vaccine vs field strain: some examples for diagnostic challenges

Avian Infectious Bronchitis

enveloped single stranded **RNA** virus high incidence of mutations in the genome S1 spike protein determines different serotypes and induces HI and neutralising antibodies

- Group-specific
 - Agargel Precipitation test (AGPT)
 - ELISA

- Serotype-specific
- Haemagglutination
 Inhibition (HI) Test
- Virus Neutralization Test using:
 - Chicken Embryo Kidney Cells (CEKC)
 - Tracheal Organ Cultures (TOC)



--->Massachusetts 41 (1941) --->Connecticut (1956) --->lowa 97 /609 (1958) →H 52 (1960) → Holte, Gray (1962) --->IBV-T (1963) --->JMK (1964) --->Florida (1971) --->Dutch variants D-274/ D-1466 (1977), D-3128 (1983)

- PL-84084 (1986)
- > IBV-G (1986)
- > 793B oder 4/91 (1991)
- ➢ 614/I (1994)
- D 388 / China QX (2005)
- Variant 2 (Middle East)

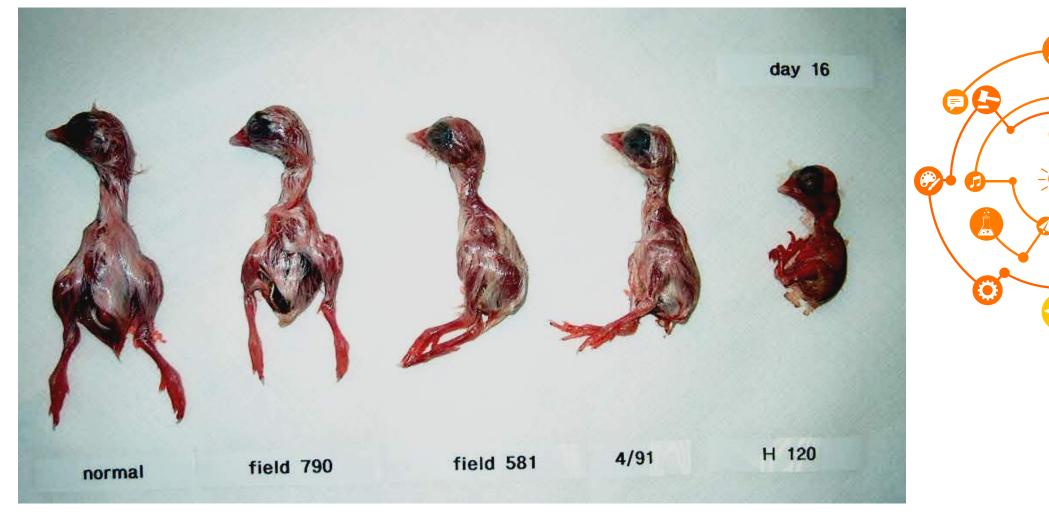
- Agargel Precipitation test (AGPT)
- ELISA
- Hemagglutination Inhibition (HI) Test
- Virus Neutralization Test using:
 - Chicken Embryo Kidney Cells (CEKC)
 - Tracheal Organ Cultures (TOC)

Infectious Bronchitis: Serology vs. virus identification

- Serology for Infectious Bronchitis can give only an indication about the field virus involved in clinical or production problems as we test only for the strains, we have available as antigens
- With the now available molecular-biological methods (PCR) it is much more accurate to identify the type of viruses in the field

Infectious Bronchitis: Virology

--->Suitable samples for the isolation of IB are:

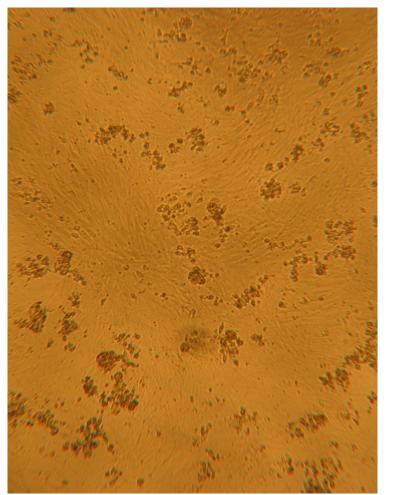

- Trachea or tracheal swabs (in case of respiratory symptoms)
- --->Caecal tonsils
- --->Cloacal swabs

> SPF embryo culture:

- inoculate 9-10 days old embryos into the allantoic cavity and incubate at 37°C
- discard eggs dying within 24 hours after inoculation
- observe embryo mortality over
 7 days
- make at least 3 passages
- Check for specific embryo changes (dwarfing)

Virology: Embryo Adaptation

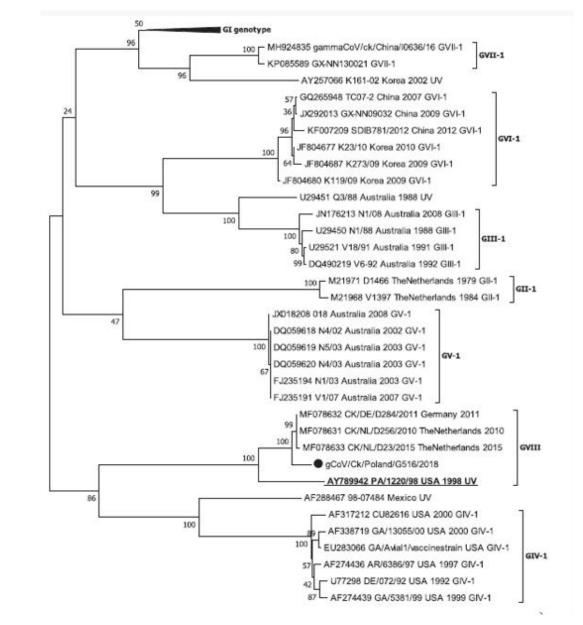
m


negative,

72 h p.i.

Infectious Bronchitis:

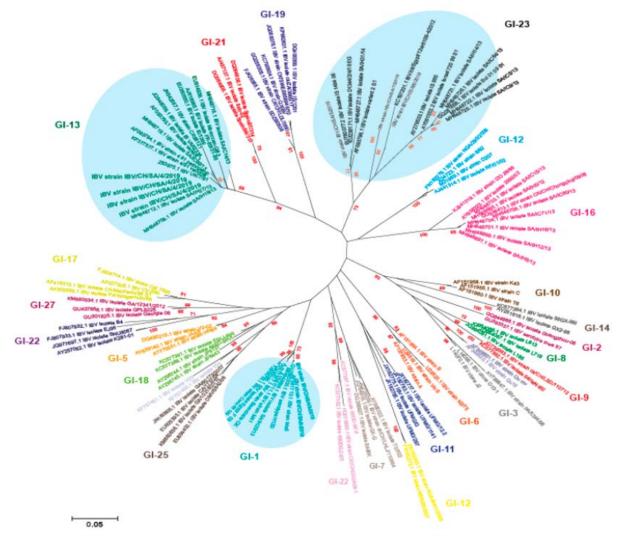
Virology: CPE in CEK cells



adapted strain, 72 h p.i.

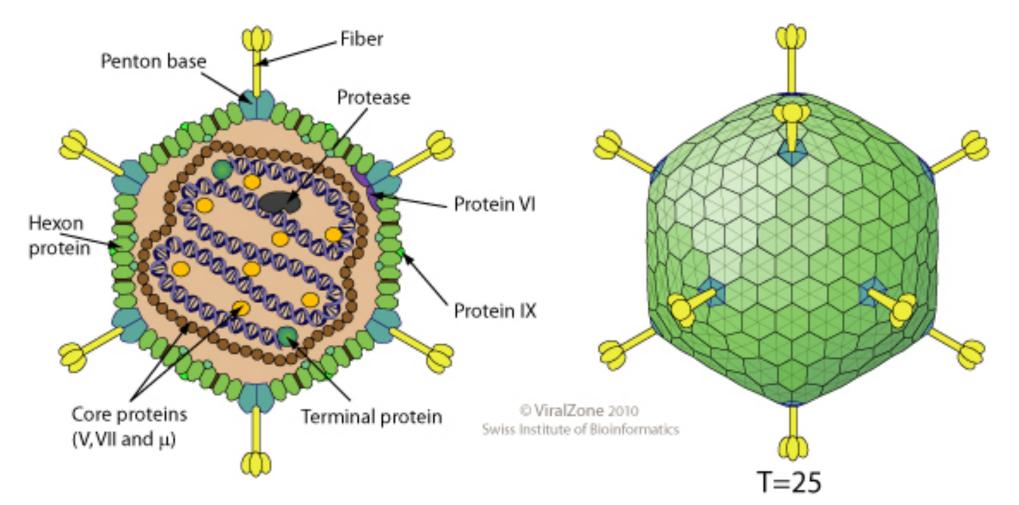
Infectious Bronchitis

 Phylogenetic tree based on a partial S1 coding region fragment (from 754 to 1133 nt according to the same strain sequence).


IBV live vaccines: Europe and Middle East

Product	Producer	Mass	D-274	4/91 (793B)	China-QX	Variant 2
Gallivac IB88 neo	Boehringer			CR88121		
Bioral H120	Boehringer	H 120				
Bioral H52	Boehringer	H 52				
HatchPak IB H120 Neo	Boehringer	H 120				
Cevac IBird	Ceva			Variant 1/96		
Cevac Mass L.	Ceva	Mass B-48				
Avipro H120	Elanco	H 120				
Avishield IB GI-13	GENERA			V-173/11		
Avishield IB H 120	GENERA	H 120				
Izovac IB H120	Izo	H 120				
Nobilis IB 4/91	MSD			4/91		
Nobilis IB H120	MSD	H 120				
Nobilis Ma5	MSD	Ma5				
Nobilis IB D274	MSD		D-274			
Nobilis IB Primo QX	MSD				D388	
TAbic® IB Var	Phibro			IS233		
TAbic® IB Var 206	Phibro					variant 2
Poulvac IB H 120	Zoetis	H 120				
Poulvac IB Primer	Zoetis	H 120	D-274			
Poulvac IB QX	Zoetis				L1148	

Product and producers names may differ depending on registration documents


---> Phylogenetic analysis based on S1 gene of the newly identified infectious bronchitis viruses (IBVs) in Saudi Arabia during 2019 showed the clustering pattern for the studied isolates with different IBV lineages labelled with circle

- --->Adenoviruses represent the largest nonenveloped viruses with Icosahedral structure
- --->Size of 70-90 nm
- --->The virion also has a unique "spike" or fiber associated with each penton base of the capsid that aids in attachment to the host cell
- --->The adenovirus genome is linear, nonsegmented double-stranded (ds) DNA

Taxonomy of Adenoviruses in Poultry

Family	Genus	Species
	Aviadenovirus (Group 1 avian adenoviruses)	Fowl Adenovirus (FAdV) Species A – E Serotype 1 – 11 (ICTV)
Adenoviridae	Siadenovirus (Group 2 avian adenoviruses)	 Hemorrhagic Enteritis of Turkeys (HEV) Marble Spleen Disease of Pheasants Avian adenovirus splenomegaly (AAS) in chickens
	Atadenovirus (Group 3 avian adenoviruses)	Duck Adenovirus 1 (DAdV-1; Egg Drop Syndrome, EDS)

Aviadenovirus Classification (FAdV)

Species	ICTV	EU	US	Strains
Α	1	1	1	Celo, 112,QBV, H1
B	5	5	8	TR22, M2 Tiptron, IBH-2A
С	4	4	4	KR5, 506, H2, K31, 61, J2-A
	10	11	10	C2B, M11, CFA20, SA2, C-2B
D	2	2	2	SR48, 685, H3, P7-A, GA1-1, Z7
	3	3	3	SR49, 74, H5, 75-1A1
	9	10	9	A02, 90, CFA19, A2-A
	11	12	12	UF71, 380
Ε	6	6	5	CR119, 168
	7	7	11	YR36, X11, X11-A, 122
	8 a	8	6	TR59, 58, CFA40, T8-8
	8 b	9	7	764, VRI-33, B-3A

Disease Associated with FAdV Infections

Inclusion Body Hepatitis

--->Hydropericardium Syndrome

--->Gizzard erosion

Diagnosis of Fowl Adenovirus Infections

Clinical examination

• Flock inspection & performance data

Pathology

Postmortem; histo-pathology (intranuclear inclusion bodies)

Serology

• Antibody detection

Virus identification

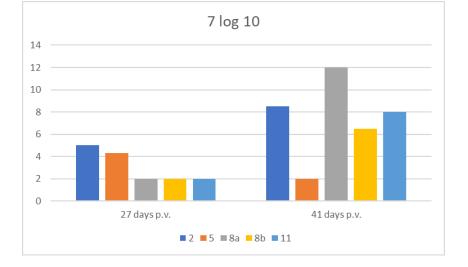
• Virology and Molecular biology

Highly specific ELISA for the detection of antibodies against Group I Avian Adeno virus.

The Fowl Adenovirus Group 1 Antibody test kit measures the amount of antibodies to the Fowl Adenovirus in the serum chickens.

The Fowl Adenovirus Group 1 Antibody test kit is used for:

- Screening for field infections
- · Monitoring success of vaccination
- · Monitoring flock status over time during the production period


Fowl Adenovirus serology

AGP Agar Gel **Precipitation Test:** group specific

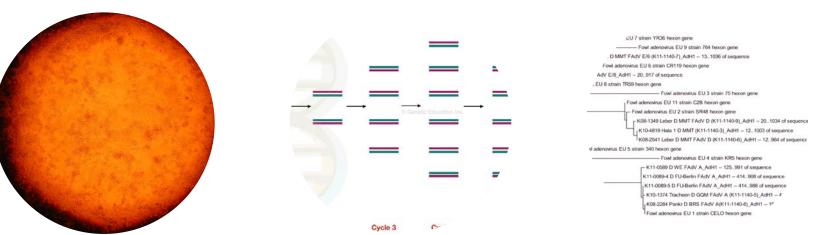
ELISA

Enzyme Linked Immunosorbent Assay:

group specific

Immunofluorescent Test:

group specific

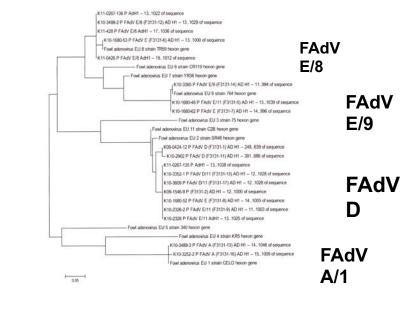

IFT

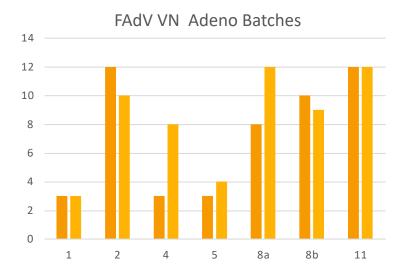
VN Virus Neutralization: serotype specific

LOHMANN-BREEDERS.COM

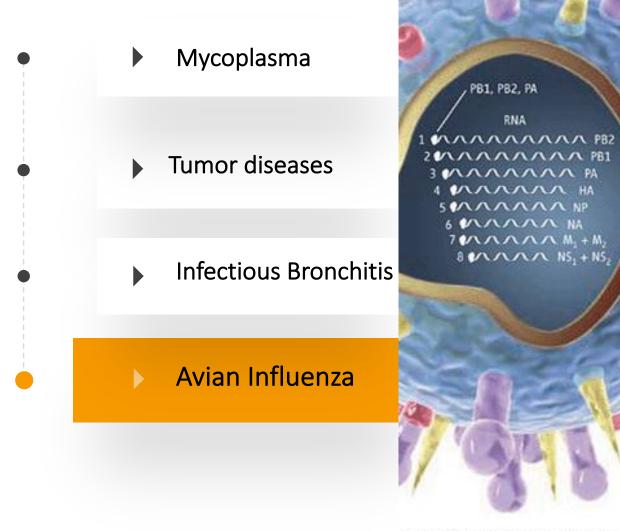
Fowl Adenovirus Detection

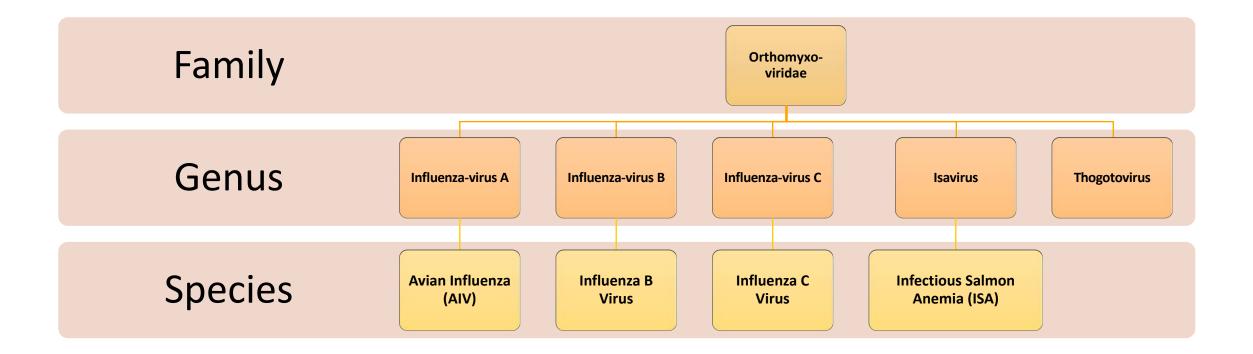
--->Virus isolation in chickembryo liver cells


---> Strain identification by PCR

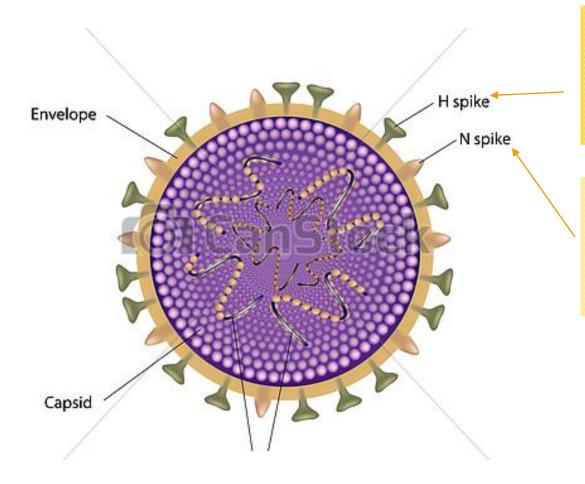

---> DNA sequencing ---> high-resolution melting (HRM-) curve analysis

Prevention of Fowl Adeno Infections


- --->Typing of FAdV relevant field strains essential for production of autogenous vaccines.
- ---> Phylogenetic trees can help to understand the epidemiological relatedness of various field isolates

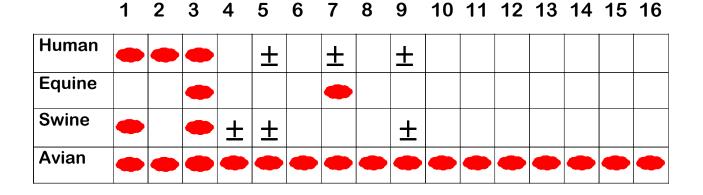

Pathogen identification and vaccine vs field strain: some examples for diagnostic challenges

eprinted with permission from Sc

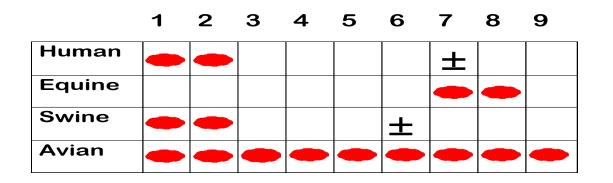


Avian Influenza: Virus Classification

Avian Influenza Viruses


The are currently 16 different Hemagglutinin subtypes known H1 – H16 (17+18)

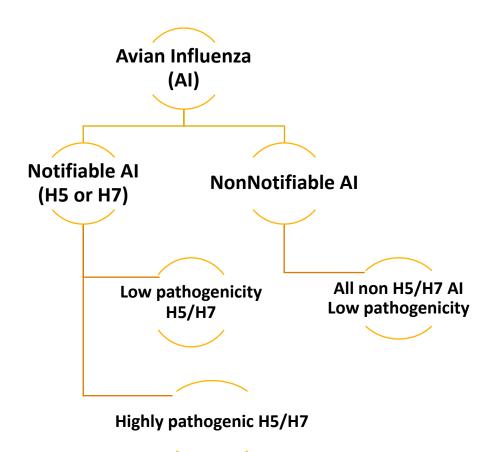
The are currently 9 different Neuraminidase subtypes known N1 – N9


> Potentially there is any combination from H and N = 144

Species prevalence of Influenza Type A viruses

Hemagglutinin (H) subtypes

Neuraminidase (N) subtypes


H17N10 and H18N11 only been found in bats

What is Avian Influenza?

Avian influenza, known informally as avian flu or bird flu, is a variety of infections caused by Influenza A viruses adapted to birds. It is initially known as fowl plague and was first described in 1878 in Italy

Initially known as fowl plague and was first described in 1878 in Italy

Diagnosis of Avian Influenza

Clinical examination

• Flock inspection & performance data

Pathology

Postmortem; histo-pathology

Serology

Antibody detection

Virus identification

Isolation and characterization

PLAI vs HPAI: Clinical signs

HPAI
Apathy
Stop in water and feed intake
Flock is ,silent'
High mortality (upto 100%)

LPAI: Pathology

Hemorrhages in proventriculus

Tracheitis with fibrinous material

Blue combs

HPAI: Pathology

Infraorbital swelling; edema and/or necrosis

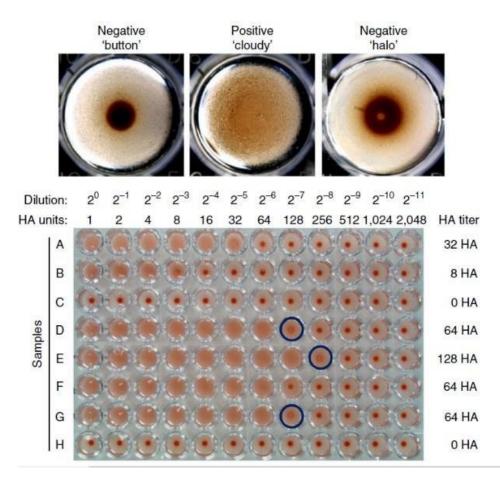
Severe tracheitis

Hemorrhages in proventriculus

Subcutaneous hemorrhages in shank's

Very specific, Ig M detection Not strain specific

Enzym-linked immunosorbent assay (ELISA) Very sensitive less specific than AGID lg G detection Not strain specific

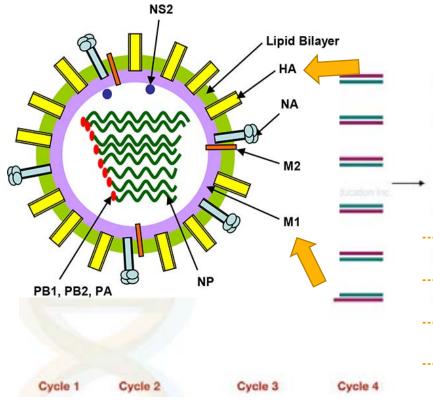

Hemagglutination-inhibition test (HI) & neuraminidase-inhibition (NI)

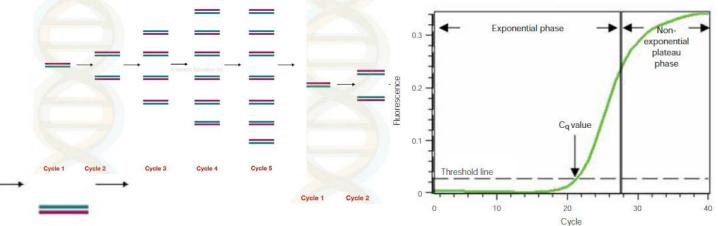
High sensitivity

Not practical to use as a screening test used to identify specific H and N antibodies in serum

Avian Influenza: Serology

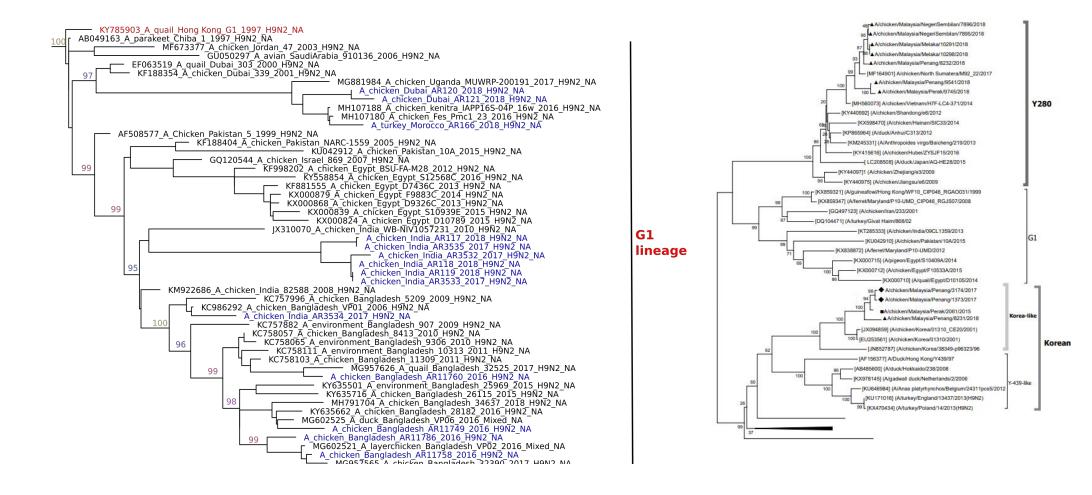
Note!


- Serology for Avian Influenza could only be used to monitor infections with Low Pathogenic Avian Influenza (LPAI)
- Suspicion of Highly Pathogenic Avian Influenza has to be investigated immediately by PCR



Virus isolation	Antigen detection		
SPF embryo culture by inoculating 9-10 days old embryos into the allantoic	- Antigen Capture Tests	Molecular typing	
cavity; observe mortality; Check for hemagglutinating activity (HA); takes several days/weeks; multiplication of infectious virus!	- RT-PCR Most rapid and sensitive methods for detection of infections!	Sequencing methods to identify lineages and phylogenetic trees	

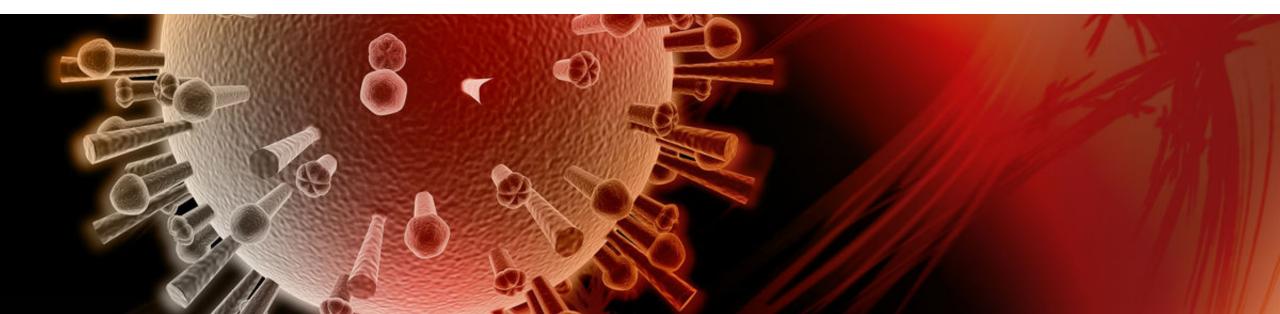
RT-PCR: Avian Influenza


- --->High sensitivity and specificity
- --->Quick turn around time, less than 3 hours
- --->Limitation:

Cycle 5

--->Cannot distinguish between live and inactivated virus

Avian Influenza: Phylogenetic analysis



Differentiate Infected from Vaccinated Animals (DIVA)

- The use of a DIVA principle could be a tool to prevent poultry populations at risk against Avian Influenza
- Inactivated vaccines have been devleoped in the past using different Neuraminidase subtypes, but a widely use of diagnostic methods is currently unrealistic.
- New generations of vaccines against H5 have been developed that allow DIVA monitoring as they only induce antibodies against the H5 antigen.
- Screening for antibodies against the conserved matrix or nucleoprotein allows detection of any field infection using routine commercially available ELISA tests.
- RT-PCR using primers for the conserved Matrix gene will not be able to detect a DIVA vaccine that only expresses the H5 hemagglutinin gene.

Future Challenges

Future challenges in Poultry Diagnostics?

Sampling

Advanced, more sensitive and rapid sampling tools

Lab submission

Safe, approved method; enable import permission

On-Site-Testing

New / improved diagnostics for onsite testing

Pathogen identification

Rapid, affordable method for pathogen sub-typing

Vaccines

Vaccine technologies allowing realistic DIVA principle

Thank you for your Attention

Questions?